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1 Basic Algorithm and Theorem in Network

1.1 Complexity Analysis

1.2 Searching Algorithm

Search algorithm is to identify all nodes that can be reached by direct path. It is easy to see

the search algorithm runs in O(m+ n) = O(m) time.

Begin

Unmark all nodes in N;

Mark node s; pred(s) = 0;

next:=1; LIST:={s};

While LIST̸= ϕ doo

Begin

Select a node i from LIST;

If node i is incident to an admission arc (i,j), then

Begin

Mark node j;

pred(j)=i;

next:=next+1

order(j):=next

add j to LIST

End

Else delete node i from LIST

End

End

1.3 Breath-first Search

Maintain the LIST as a queue, select nodes from the front of LIST and add them to the rear.



1 Basic Algorithm and Theorem in Network

Lemma 1.1 (Breadth First Search theorem)
The breadth first search tree is the “shortest path tree”, that is, the path from s to j in the

tree has the fewest possible number of arcs.

Note on Note that the shortest path tree here does not clarify the distance, i.e., each arc’s

distance is 1.

1.4 Depth-first Search

Maintain the LIST as a stack, select nodes from the front of LIST and add them to the front.

A depth-first order also satisfies the following properties,

If node j is a descendant of node i ̸= j, then order(j)>order(i).

All the descendants of any node are ordered consecutively.

1.5 Acyclic Identification

Definition 1.1 (Topological Ordering)
The labeling of a graph is a topological ordering if every arc joins a lower-labeled node

to a higher-labeled node. That is, for every (i, j) ∈ A, order(i)<order(j).

Proposition 1.1 (Unique Topological Ordering)
x

Proposition 1.2 (Topological ordering and acyclic)
A network is acyclic iff it possesses a topological ordering of its nodes.

Below is the Topological sorting algorithm to identify if the network is acyclic and give a

topological ordering.

Begin

For all i ∈ N, do indegree(i)=0;

For all (i, j) ∈ A, do indegree(j)+=1;

LIST:=ϕ; next:=0;

For all i ∈ N do

If indegree(i)=0, then LIST=LIST∪ {i};

While LIST̸= ϕ do

Begin

Select a node i from LIST and delete it;

next:=next+1; order(i) :=next;

For (i, j) ∈ A, do

Begin

indegree(j)-=1;

If indegree(i)=0, then LIST=LIST∪ {j};

End
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2 Minimum Cost Flow Problem

End

If next<n, then the network contains a cycle;

Else it is acyclic, and the labeling is a topological ordering.

End

Proposition 1.3 (Adjacency matrix and acyclic)
A directed graph G is acyclic iff we can renumber its nodes so that its node-node adjacency

matrix is a lower triangular matrix.

1.6 Flow Decomposition

Lemma 1.2 (Flow decomposition theorem 1)
Let f ≥ 0 be a nonzero circulation. Then, there exist simple circulations f1, ..., fk,

involving only forward arcs, and positive scalars a1, ..., ak, such that

f =

k∑
i=1

aif
i

Furthermore, if f is an integer vector, then each ai can be chosen to be an integer.

Lemma 1.3 (Flow decomposition theorem 2)
Every path and cycle flow has a unique representation of non-negative arc flows. Let

f(p), p ∈ P and f(w), w ∈ W be the path and cycle flows. Let δij(p) = 1 if (i, j) ∈ p

and 0 otherwise, δij(w) = 1 if (i, j) ∈ w and 0 otherwise. Then,

xij =
∑
p∈P

δij(p)f(p) +
∑
w∈W

δij(w)f(w)

Conversely, every non-negative arc flow can be represented as a path and cycle flow

(though not necessarily unique) with the following two properties:

Every directed path with positive flow connects a supply node to an excess node.

At most n+m paths and cycles have non-zero flow. Out of these, at most m cycles

have non-zero flow.

Proof Note that each iteration we can construct a loop or a path to eliminate a node or an arc.

And there are n + m nodes and arcs, thus, it needs at most n + m non-zero loop or path for

iteration. And each time we construct a non-zero loop, we can remove an arc, thus, there are at

most m non-zero loop we can construct. ■

There is also an algorithm to do flow decomposition.

x
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2 Minimum Cost Flow Problem

2 Minimum Cost Flow Problem

In this problem, b(i) > 0 is a supply node, b(i) < 0 is a demand node. If a flow satisfies

these constraints, it will be called a feasible flow.

min
∑

(i,j)∈A

cijxij

s.t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = b(i), i ∈ N (Flow balance constraint)

lij ≤ xij ≤ uij , (i, j) ∈ A (Capacity constraint)

(1)

By summing the Flow balance constraint, we obtain the assumption:∑
i∈N

b(i) = 0

We also have a matrix form like this, where N is the node-arc incidence matrix.

min cx

s.t. Nx = b (Flow balance constraint)

l ≤ x ≤ u (Capacity constraint)

(2)

Note that follow problems are special variants:

Shortest path problem,

If we only want the solution from node s to node t, then set b(s) = 1, b(t) = −1 and

b(i) = 0.

If we want all shortest path to node i, then set b(s) = n− 1 and b(i) = −1∀i ̸= s.

Maximum flow problem (Min cut), here we set b(i) = 0∀i ∈ N and cij = 0∀(i, j) ∈ A,

and introduce an additional arc (t, s) with cost cts = −1 and flow bound uts = ∞. Since

any flow on arc (t, s) must travel from node s to node t through the arcs in A (since each

b(i)=0), the minimum cost flow solution maximizes the flow on arc (t,s).

Assignment problem, a special class of transportaion problem, here xij = 0 or 1.

Transportation problem

Circulation problem, here b(i) = 0∀i ∈ N and we wish to find the circulation with

minimum cost.

Convex cost flow problems, here the cost is a convex function of the amount of flow.

Generalized flow problems, here arcs may "consume" or "generate" flow, and arcs only

conserve flows in the minimum cost flow problem. When xij units of flow enter an arc

(i,j), then µijxij units arrive at node j, we say the arc is lossy if 0 < µij < 1 and gainy if

1 < µij < ∞.

Multicommodity flow problems

Note that every variant of the network flow problem can be shown to be equivalent to each

other:

Every network flow problem can be reduced to one with exactly one source and exactly
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2 Minimum Cost Flow Problem

one sink node.

Every network flow problem can be reduced to one without sources or sinks, that is, we

can transform the former to a circulation problem.

Transformation of a node capacity into an arc capacity, just split this node into two nodes

with an arc capacity equal to the node capacity.

The lower bound of arc flow constraint can be reduced to zero, just construct the connection

of yij = xij − lij.

Inequality constraints
∑

j xij −
∑

k xki ≤ bi: Construct a "dummy node" n+1 and

bn+1 = −B, where B =
∑

i bi. Any feasible solution for the original problem can be

transformed into a feasible solution for the new problem by sending excess flow to node

n+1.

Eliminating upper bounds (Orlin, 2010, Lec. 4): For i with b(i) and j with b(j) and arc

with xij , we transform i with b(i)− uij and j with b(j) and a new node k with u(ij) and

uij − xij from k to i and xij from k to j.

i j
uij

xij

bi bj

i < i, j >
uij − xij

bi − uij uij

Before After

j
xij

bj

i j
20

5

7 −2

i < i, j >
15

−13 20

j
5

−2

Figure 1: Eliminating upper bounds

Undirected arcs to directed arcs, this is actually similar to the absolute case in LP. Suppose

the arc {i,j} is undirected with cost cij ≥ 0 and capacity uij , we replace each undirected

arc by two directed arcs (i,j) and (j,i), both with cost cij and capacity uij .

Arc Reversal (Ahuja et al., 1993, P. 40), this is typically used to remove arcs with negative

costs. In this transformation we replace the variable xij by uij − xji. Doing so replaces

the arc (i,j), which has an associated cost cij , by the arc (j,i) with an associated cost −cij .

i j
(cij , uij)

xij

b(i) b(j)

i j
(−cij , uij)

xji

b(i)− uij b(j) + uij

Figure 2: Arc reversal transformation.

There are also two kinds network models does not correlate to flow problems.

Minimum spanning tree problem

Matching problem
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3 Shortest Path Problem

Definition 2.1 (Circulation)
Any flow vector f that satisfies Af = 0 is called a circulation.

Intuitively, with zero external supply and demand, the flow "circulates" inside the network.

3 Shortest Path Problem

There is some assumptions for this problem,

All arc lengths are integers. (Can be relaxed)

The network contains a directed path from node s to every other node in the network.

The network does not contain a negative cycle.

The network is directed.

Here we use d(i) denotes the length of some path from s node to node i. And the procedure

update(i) means that if d(j) > d(i) + cij then do d(j) := d(i) + cij and pred(j):=i, note that

distance labels can only decrease in an update step.

Proposition 3.1 (Optimality for subpath)
If the path s = i1 − ... − ik = k is a shortest path from node s to node k, then for every

q = 2, ..., k − 1, the subpath s = i1 − ...− iq is the shortest path from node s to node iq.

Proposition 3.2 (Optimality condition 1)
A direct path P from the source node to node k is a shortest path iff d(j) = d(i) +

cij ,∀(i, j) ∈ P , here d(.) denotes the shortest path distance.

Proof If side: Sum up equations ∀(i, j) ∈ P , then you have d(k) = c12 + ...ck−1,k, and d(.)

denotes the shortest path distance, this means that this path is a shortest path.

Onlyif side: ■

Proposition 3.3 (Optimality condition 2 (Malik et al., 1989))
Consider a network without any negative cost cycle. For every node j ∈ N , let ds(j)

denote the length of a shortest path from node s to node j and let dt(j) denote the length

of a shortest path from node j to node t.

An arc (i,j) is on a shortest path from node s to node t iff ds(t) = ds(i)+cij+dt(j).

ds(t) = min{ds(i) + cij + dt(j), (i, j) ∈ A}.

There are two kinds of algorithms for solving shortest path problems: label setting and label

correcting. The approaches vary in how they update the distance labels from step to step and

how they "converge" toward the shortest path distances. Label-setting algorithms designate one

label as permanent (optimal) at each iteration. In contrast, label-correcting algorithms consider

all labels as temporary until the final step. Label-setting can only apply to acyclic networks and

problems with nonnegative arc lengths, while label-correcting are more general and apply to all
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3 Shortest Path Problem

classes of problems.

3.1 Floyd-Warshall algorithm

Here we use Floyd-Warshall algorithm to derive the shortest path, and this is also applicable

to the networks with negative arcs

Set d(s) = 0 and the remaining distance labels to very large numbers.

Examine the nodes in the topological order and for each order i, scan the arcs

in A(i).

If d(j) > d(i) + cij, for any (i, j) ∈ A(i), then update d(j) = d(i) + cij.

After examining all nodes, the distance labels is optimal.

3.2 Dijkastra’s Algorithm

Begin

S := ϕ; S̄ := N ;

d(i) := ∞,∀i ∈ N ;

d(s) := 0, pred(s):=0;

While |S|<n, do

Begin

Let node i ∈ S̄ be such that d(i) = Min{d(j) : j ∈ S̄}
S := S ∪ {i}; S̄ := S̄ − {i};
For each (i, j) ∈ A(i), do

If d(j) > d(i) + cij, then d(j) = d(i) + cij,

pred(j):=i;

End

End

Proof [(Borradaile, n.d.)] Reference. ■

This algorithm, also known as label-setting algorithm, maintains two sets of nodes: per-

manently labeled nodes S and temporarily labeled nodes S̄ at each iteration. And the most

time-consuming step is at node selection due to distance-label comparison.

Proposition 3.4
The distance labels that the Dijkstra’s algorithm designates as permanent are non-

decreasing.

Proposition 3.5
If d(i) is the distance label that the algorithm designates as permanent at the beginning

of an iteration, then at the end of the iteration, d(j) ≤ d(i) + C for each finitely labeled

node j ∈ S̄, where C is the maximum arc length.

7



3 Shortest Path Problem

3.3 Improved Dijkastra’s Algorithm

Here we propose some data structures to improve Dijkastra’s Algorithm’s efficiency. One

way is using Buckets in Dial’s Algorithm.

3.4 Label Correcting Algorithm

Correcting Algorithm is more complicated and can be applied to more general case.

Theorem 3.1 (Optimality Condition)
For every node j ∈ N , let d(j) denote the length of some directed path from the source

node to node j. Then, d(j) represents the shortest path distances iff they satisfy the

following optimality condition:

d(j) ≤ d(i) + cij , (i, j) ∈ A

Actually, this condition can be interpreted as reduced cost condition„ we can define the

reduced cost length cdij of arc (i, j), where cdij = cij + d(i)− d(j).

Lemma 3.1 (reduced cost property)
For any directed cycle W ,

∑
(i,j)∈W cdij =

∑
(i,j)∈W cij .

For any directed path P from node k to node l,
∑

(i,j)∈P cdij =
∑

(i,j)∈P cij +

d(k)− d(l).

If d(.) represent shortest path distances, cdij ≥ 0 for every arc (i, j) ∈ A.

Below is the generic algorithm

Begin

d(s) := 0; pred(s) := 0;

d(i) := ∞, for i ∈ N − {s};
While some arc (i, j) satisfies d(j) > d(i) + cij, do

Begin

d(j) = d(i) + cij, pred(j) := i;

End

End

Note on
The predecessor indices might not necessarily define a tree. In case of a negative cycle,

the resulting list can form a disconnected graph.

We refer to the collection of arcs (pred(j),j) as the predecessor graph, and the label-

correcting algorithm satisfies the invariant property that for every arc (i, j) in the pre-

decessor graph, cdij ≤ 0. When the algorithm terminates, the reduced arc length in the

predecessor tree must be zero.
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Below is a modified label-correcting algorithm, since the generic algorithm does not specify

any method for selecting an arc violating the optimality condition.

Begin

d(s) := 0; pred(s) := 0;

d(i) := ∞, for i ∈ N − {s};
LIST:= {S};
While LIST̸= ∅, do

Begin

Remove an element i from LIST

For each arc (i, j) ∈ A(i), do

If d(j) > d(i) + cij, then

Begin

d(j) = d(i) + cij; pred(j) := i;

If j /∈ LIST, then add j to LIST

End

End

End

3.5 Connection to other topic

3.5.1 Dynamic Lot Sizing

3.5.2 Most vital arc problem (Malik et al., 1989)

3.5.3 Kth shortest path problem

Note that even there are many shortest paths, this algorithm works.

4 Maximum Flow Problem

max v

s.t.
∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji =


v for i = s

0 for all i ∈ N − {s and t}

−v for i = t

0 ≤ xij ≤ uij for each (i, j) ∈ A

(3)

Assumption 4.1
The network is directed. (feasibility)

All the capacities are non-negative integers. (feasibility)

The network does not contain a directed path from node s to node t consisting of
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infinite capacity. (bounded, finite optimal)

The network does not contain parallel arcs.

Definition 4.1 (Residual Capacity and Residual Network)
Given a flow x, the residual capacity rij = uij−xij+xji of arc (i, j) ∈ A is the maximum

additional flow that can be sent from the arcs (i, j) and (j, i) between nodes i and j. Here

rij has two components

uij − xij is the unused capacity of (i, j).

the current flow xji on arc (j, i), which can cancel the increase in the flow from i to

j.

We refer to the network G(x) consisting of the arcs with positive residual capacities as

the residual network.

By definition, we have xij−xji = uij−rij , since xij and xji are positive here, if uij ≥ rij ,

xij = uij − rij and xji = 0, if uij < rij , xji = rij − uij and xij = 0.

Definition 4.2 (s-t Cut)
A cut is an s−t cut if s ∈ S and t ∈ S̄. Capacity of an s−t cut u[S, S̄] =

∑
(i,j)∈(S,S̄) uij ,

and this is the upper bound of the flow from s to t. Residual capacity of an s − t cut is

r[S, S̄] =
∑

(i,j)∈(S,S̄) rij .

Let x be a flow in the network. the amount of flow from nodes in S to nodes in S̄ can be

expressed as follows. Since 0 ≤ xij ≤ uij , we have v ≤ U [S, S̄].

v =
∑
i∈S

 ∑
{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji

 =
∑

(i,j)∈(S,S̄)

xij −
∑

(i,j)∈(S̄,S)

xij

Lemma 4.1 (Cut’s Property)
The value of any flow is less than or equal to the capacity of any cut in the network.

For any flow x of value v in a network, the additional flow that can be sent from the

source node s to the sink node t is less than or equal to the residual capacity of any

s− t cut.

Any flow x whose value equals the capacity of some cut [S, S̄] is the maximum flow and

the cut is the minimum cut. That is, the minimum cut problem is the dual problem of maximum

flow problem.

Below is the Generic Augmenting Path Algorithm, Labeling Algorithm and Procedure

Augment.

Begin

x := 0;

while G(x) contains a path from s to t, do
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4 Maximum Flow Problem

Begin

Identify an augmenting path P from s to t

δ := Min {rij : (i, j) ∈ P}.
Augment δ units of flow along P and update G(x)

End

End

Begin

Label node t;

While t is labeled, do

Begin

Unlabel all the nodes;

Set pred(j) := 0 for j ∈ N

Label node s, and LIST:= {s};
While LIST̸= ∅ and t is unlabeled, do

Begin

Remove a node i from LIST;

For each arc (i, j) in the residual network; do

If j is unlabeled, set pred(j) := i, label j, add j to LIST

End

If t is labeled, then augment.

End

End

Begin

Use predecessor labels to trace back from the sink to the source to obtain a

path P;

δ := Min {rij : (i, j) ∈ P}
Augment along P

End

4.1 Dual: Min-Cut

The dual can be formulated as this way1 or this way2, this way3, this way4.

A second explanation of Dual5.

1Lecture 15, Stanford University — CS261: Optimization

2The dual of the maximum flow problem

3Lecture 24: The Max-Flow Min-Cut Theorem Math 482: Linear Programming

4Lecture 14: Linear Programming II

5Lecture 10: Duality in Linear Programs
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5 Maximum Flow Problem

Theorem 4.1 (Max-Flow Min-Cut Theorem)
The maximum value of the flow from a source node s to a sink node t in a capacitated

network equals the minimum capacity among all s− t cuts.

Theorem 4.2 (Augmenting Path Theorem)
A flow x∗ is a maximum flow iff the residual network G(x∗) contains no augmenting path.

Theorem 4.3 (Integrality Theorem)
If all arc capacities are integer, the maximum flow problem has an integer maximum flow.

5 Maximum Flow Problem

max v

s.t.
∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji =


v for i = s

0 for all i ∈ N − {s and t}

−v for i = t

0 ≤ xij ≤ uij for each (i, j) ∈ A

(4)

Assumption 5.1
The network is directed. (feasibility)

All the capacities are non-negative integers. (feasibility)

The network does not contain a directed path from node s to node t consisting of

infinite capacity. (bounded, finite optimal)

The network does not contain parallel arcs.

Definition 5.1 (Residual Capacity and Residual Network)
Given a flow x, the residual capacity rij = uij−xij+xji of arc (i, j) ∈ A is the maximum

additional flow that can be sent from the arcs (i, j) and (j, i) between nodes i and j. Here

rij has two components

uij − xij is the unused capacity of (i, j).

the current flow xji on arc (j, i), which can cancel the increase in the flow from i to

j.

We refer to the network G(x) consisting of the arcs with positive residual capacities as

the residual network.

By definition, we have xij−xji = uij−rij , since xij and xji are positive here, if uij ≥ rij ,

xij = uij − rij and xji = 0, if uij < rij , xji = rij − uij and xij = 0.
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5 Maximum Flow Problem

Definition 5.2 (s-t Cut)
A cut is an s−t cut if s ∈ S and t ∈ S̄. Capacity of an s−t cut u[S, S̄] =

∑
(i,j)∈(S,S̄) uij ,

and this is the upper bound of the flow from s to t. Residual capacity of an s − t cut is

r[S, S̄] =
∑

(i,j)∈(S,S̄) rij .

Let x be a flow in the network. the amount of flow from nodes in S to nodes in S̄ can be

expressed as follows. Since 0 ≤ xij ≤ uij , we have v ≤ U [S, S̄].

v =
∑
i∈S

 ∑
{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji

 =
∑

(i,j)∈(S,S̄)

xij −
∑

(i,j)∈(S̄,S)

xij

Lemma 5.1 (Cut’s Property)
The value of any flow is less than or equal to the capacity of any cut in the network.

For any flow x of value v in a network, the additional flow that can be sent from the

source node s to the sink node t is less than or equal to the residual capacity of any

s− t cut.

Any flow x whose value equals the capacity of some cut [S, S̄] is the maximum flow and

the cut is the minimum cut. That is, the minimum cut problem is the dual problem of maximum

flow problem.

Below is the Generic Augmenting Path Algorithm, Labeling Algorithm and Procedure

Augment.

Begin

x := 0;

while G(x) contains a path from s to t, do

Begin

Identify an augmenting path P from s to t

δ := Min {rij : (i, j) ∈ P}.
Augment δ units of flow along P and update G(x)

End

End

Begin

Label node t;

While t is labeled, do

Begin

Unlabel all the nodes;

Set pred(j) := 0 for j ∈ N

Label node s, and LIST:= {s};
While LIST̸= ∅ and t is unlabeled, do

Begin

Remove a node i from LIST;
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6 Network Simplex Algorithm

For each arc (i, j) in the residual network; do

If j is unlabeled, set pred(j) := i, label j, add j to LIST

End

If t is labeled, then augment.

End

End

Begin

Use predecessor labels to trace back from the sink to the source to obtain a

path P;

δ := Min {rij : (i, j) ∈ P}
Augment along P

End

5.1 Dual: Min-Cut

The dual can be formulated as this way6 or this way7, this way8, this way9.

A second explanation of Dual10.

Theorem 5.1 (Max-Flow Min-Cut Theorem)
The maximum value of the flow from a source node s to a sink node t in a capacitated

network equals the minimum capacity among all s− t cuts.

Theorem 5.2 (Augmenting Path Theorem)
A flow x∗ is a maximum flow iff the residual network G(x∗) contains no augmenting path.

Theorem 5.3 (Integrality Theorem)
If all arc capacities are integer, the maximum flow problem has an integer maximum flow.

6 Network Simplex Algorithm

Definition 6.1 (Free arc and restricted arc)
Arc (i, j) is free if 0 < xij < uij and is a restricted arc if xij = 0 or xij = uij .

Definition 6.2 (Cycle-free solution)
A solution x is cycle-free if the network contains no cycle composed only of free arcs.

6Lecture 15, Stanford University — CS261: Optimization

7The dual of the maximum flow problem

8Lecture 24: The Max-Flow Min-Cut Theorem Math 482: Linear Programming

9Lecture 14: Linear Programming II

10Lecture 10: Duality in Linear Programs
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6 Network Simplex Algorithm

Definition 6.3 (Spanning tree solution)
A feasible solution x and the associated spanning tree of the network is a spanning tree

solution if every non-tree arc is a restricted tree. A spanning tree solution partitions the

arc set A into three sets (T, L, U):

T : n− 1 arcs in the spanning tree.

L: the non-tree arcs whose flows are restricted to be zero.

U : the non-tree arcs whose flows are restricted to be the arcs’ flow capacities.

A spanning tree structure is feasible if all arcs’ flow satisfy the bounds. The spanning tree

is non-degenerate if every tree arc in a spanning tree solution is a free arc.

Lemma 6.1 (Cycle Free Property)
If the objective function of a minimum cost flow problem is bounded from below over the

feasible region, the problem always has an optimal cycle free solution.

Lemma 6.2 (Spanning Tree Property)
If the objective function of a minimum cost flow problem is bounded from below over the

feasible region, the problem always has an optimal spanning tree solution.

Note on Similar to simplex method of LP, we can construct a spanning tree solution as a basic

solution, e.g., we can set xij = 0 for (i, j) ∈ L, xij = uij for (i, j) ∈ U and solve xij for

(i, j) ∈ T .

Theorem 6.1 (Optimality Condition)
A spanning tree structure (T, L, U) is an optimal spanning tree structure of the minimum

cost flow problem if it is feasible and for some choie of node potential π, the arc reduced

costs cπij satisfy the following conditions:

cπij = 0 for all (i, j) ∈ T.

cπij ≥ 0 for all (i, j) ∈ L.

cπij ≤ 0 for all (i, j) ∈ U.

Below is the procedure for computing node potentials, where thread(i) is the node in the

depth-first traversal search encountered after the node itself.

Begin

π(1) = 0;

j = thread(1);

While j ̸= 1, do

Begin

i := pred(j);

If (i, j) ∈ A, then π(j) := π(i)− cij;

If (j, i) ∈ A, then π(j) := π(i) + cij;

j = thread(j).
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6 Network Simplex Algorithm

End

End

Lemma 6.3 (Dual Integrality Property)
If all arc costs are integer, the minimum cost flow problem always has optimal integer

node potentials.

Lemma 6.4 (Primal Integrality Property)

Below is the procedure for computing flows and the Network Simplex Algorithm.

Begin

b^{\prime}(i)=b(i), i \in N;

For (i, j) ∈ U, do

set xij = uij , b
′(i) = b′(i)− uij , b

′(j) = b′(j) + uij;

For (i, j) ∈ L, do

set xij = 0;

T ′ := T;

While T ′ ̸= {1} do

Begin

Select a leaf node j ∈ T ′;

i := pred(j);

If (i, j) ∈ T ′, then

xij := −b(j);

Else

xij := b(j).

b′(i) := b′(i) + b′(j);

Delete node j and the arc incident to it in T ′.

End

End

Begin

Determine an initial feasible tree structure (T, L, U);

Let x be the flow and π the node potentials associated with tree;

While some non-tree arcs violate optimality condition, do

Begin

Select an entering arc (k, l) violating the optimality condition;

Add (k, l) to the tree and determine the leaving (p, q);

Perform a tree update, update the flow x and node potential π.

End

End

Note on Entering variable Choosing (i, j) ∈ L, with cπij < 0 or (i, j) ∈ U, with cπij > 0. The
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7 Lagrangian Relaxation

standard for selecting can be either the largest
∣∣∣cπij∣∣∣ or the first arc scanned.

Note on Pivoting Suppose we choose (k, l) as entering variable, and after that we get the cycle

w, which is also called as pivot cycle.

Let the orientation of the cycle W be that of (k, l) if (k, l) ∈ L or the opposite to that of

(k, l) if (k, l) ∈ U .

W̄ and W are respectively the forward and backward arc sets.

The maximum flow change δij satisfies that δij = uij − xij if (i, j) ∈ W̄ , and δij = xij if

(i, j) ∈ W .

Augment δ = Min {δij : (i, j) ∈ W}, and the arc that defines δ leaves the basis.

7 Lagrangian Relaxation

If LP’s constraints can be divided into two types: some are easy to solve, and the others are

not easy to solve, than we can use Lagrangian relaxation to remove “bad” constraints and putting

them into the objective function, assigned with weights (the Lagrangian multiplier).

7.1 Symmetric Form

Primal Lagrangian Relaxation Lagrangian multiplier problem

min cTx min cx+ µ(Ax− b) L∗ = max
µ

L(µ)

s.t. Ax = b s.t. x ∈ X L(µ) = min{cx+ µ(Ax− b) : x ∈ X}

x ∈ X a polyhedral set.
(5)

Theorem 7.1 (Lagrangian Bounding Pricinple)
For any vector µ of the Lagrangian multipliers, the value L(µ) of the Lagrangian function

is a lower bound on the optimal objective function value z∗ of the original optimization

problem.

Theorem 7.2 (Weak Duality)
The optimal objective function value L∗ of the Lagrangian multiplier problem is always a

lower bound on the optimal objective function value of the original problem (i.e.,L∗ ≤ z∗).

Theorem 7.3 (Optimality Test)
Suppose that µ is a vecotr of Lagrangian multipliers and x is a feasible solution to

the Primal problem satisfying the condition L(µ) = cx. Then L(µ) is an optimal

solution of the Lagrangian multiplier problem (i.e. L∗ = L(µ)) and x is an optimal

solution to the Primal problem.

If for some choice of the Lagrangian multiplier vector µ, the solution x∗ of the
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Lagrangian relaxation is feasible in the Primal problem, then x∗ is an optimal

solution to the Primal problem and µ is an optimal solution to the Lagrangian

multiplier problem.

7.2 Asymmetric Form

Primal Lagrangian Dual

min z(x) = cTx max f(w) = wT b+min
x∈X

(cT − wTA)x

s.t. Ax ≥ b s.t. w ≥ 0

x ∈ X , where X is a polyhedral set.
(6)

Theorem 7.4 (Weak Duality)
The optimal objective function value L∗ of the Lagrangian multiplier problem is always

a lower bound on the optimal objective function value of the original problem (i.e.,

f(w∗) ≤ z(x∗)).

Proof This is equal to show any feasible solution x0 to Primal and any feasible solution

w0 to Lagrangian Dual satisfy cTx0 ≥ f(w0). Since x0 is feasible to Primal, x0 ∈ X and

minx∈X(cT −wTA)x ≤ (cT −wTA)x0. Note that Ax0 ≥ b means wT
0 Ax0 ≥ wT

0 b (w0 ≥ 0),

thus

f(w0) ≤ wT
0 b+ (cT − wTA)x0 = cTx0 + wT

0 b− wTAx0 ≤ cTx0

■

Theorem 7.5 (Strong Duality)
Suppose that X is nonempty and bounded and that the primal problem possess a finite

optimal solution. Then

min
Ax≥b,x∈X

cTx = max
w≥0

f(w)

Proof
Primal Dual

min z(x) = cTx max λT
1 b+ λT

2 d

s.t. Ax ≥ b s.t. λT
1 A+ λT

2 B = cT

Bx ≥ d λ1, λ2 ≥ 0

(7)

Note that x ∈ X can be expressed as Bx ≥ d, and assume x∗ is a feasible optimal solution to

Primal, λ∗
1 and λ∗

2 are dual vector for constraint Ax ≥ b and Bx ≥ d, then we must have dual

feasiblity

(λ∗
1)

TA+ (λ∗
2)

TB = cT (8)

18



7 Lagrangian Relaxation

and following complementary slackness conditions
λ∗
1(Ax− b) = 0

λ∗
2(Bx− d) = 0

x∗((λ∗
1)

TA+ (λ∗
2)

TB − cT ) = 0

Since λ∗
1 ≥ 0, λ∗

1 is also a feasible solution to maxw≥0 f(w).

f(λ∗
1) = (λ∗

1)
T b+min

x∈X
(cT − (λ∗

1)
TA)x

Consider the following duality, note thatx∗ andλ∗
2 are optimal solution to Primal and Dual respec-

tively because of primal feasiblity, dual feasibility (8) and complementary slackness conditions

(7.2, 7.2).

Primal Dual

min z(x) = (cT − (λ∗
1)

TA)x max λT
2 d

s.t. Bx ≥ d s.t. λT
2 B = cT − (λ∗

1)
TA, λ2 ≥ 0

(9)

Thus f(λ∗) = cTx∗, and by weak duality theorem we know f(w) ≤ cTx∗ = f(λ∗) = cTx,

thus λ∗ is also the optimal solution to the Lagrangian dual and the optimal solutions for both

questions are equal. ■
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